Search published articles


Showing 3 results for Free Vibration

M. Namjoo, H. Golbakhshi,
Volume 4, Issue 3 (9-2014)
Abstract

The natural frequencies and mode shapes of pneumatic tires are predicted using a geometrically accurate, three-dimensional finite element modeling. Tire rubber materials and cord layers are represented independently using “shell element” available in COSMOS. The effects of some physical parameters such as the inflation pressure tread pattern, thickness of belts and ply angles to the natural frequencies of tires are investigated. By imposing equivalent centrifugal forces, the effect of translational speed on vibrating behavior of the tire is also studied in this work. Comparisons of numerical and experimental results are given to show the validity of the proposed model.
R. Hosseini, M. Azadi, , , ,
Volume 5, Issue 4 (12-2015)
Abstract

In the present paper, the modal analysis on a full finite element model of an off-road vehicle. This vehicle was modeled in the CATIA software and then meshed in the HYPERMESH software. The free vibration analysis was conducted by the ABAQUS software. By applying an external displacement, the forced vibration analysis was also performed. As a result, natural frequencies and shape modes were extracted to detect critical regions. Then, some improvements were suggested to have better vibration behavior of the vehicle.


Davod Molaei, Dr. Mostafa Talebitooti,
Volume 15, Issue 2 (6-2025)
Abstract

This paper presents a novel investigation into the free vibration of porous folded plates using the differential transformation method (DTM). The porosity is functionally graded (FG) along the thickness of the plate, resulting in material properties that vary with the z-coordinate. The motion equations for each plate segment are derived based on classical plate theory (CPT), with simply-supported boundary conditions applied at the front edges, allowing the transformation of partial differential equations into ordinary differential equations. The differential transformation method is then employed to discretize the motion equations in the x-direction. By applying boundary conditions at the remaining edges and ensuring continuity at the joints, the eigenvalue problem is formulated, leading to the calculation of natural frequencies and mode shapes of the folded plate. The mathematical model is validated through comparisons with finite element method (FEM) results and existing literature. Results indicate that Type C porosity distributions exhibit the highest stiffness and resonant frequency compared to other porosity types. While frequency behavior is consistent across mode numbers regardless of porosity distribution and plate length, the impact of the porosity parameter on the frequency of Type C plates is demonstrably less significant than on other porosity types.

Page 1 from 1     

© 2022 All Rights Reserved | Automotive Science and Engineering

Designed & Developed by : Yektaweb