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Recently, number of Hybrid Electric Vehicles (HEV) is on the rise due to 

concerns over environmental issues. By combining fuel and electricity as 

two sources of power, this type of vehicle is capable of bettering fuel 

economy and lowering emission. In this work, fuel and electrical energy 

consumption of a parallel hybrid electric vehicle are investigated through 

TEH-CAR urban drive cycle. For this purpose, a forward looking model 

is developed in AVL CRUISE M. To ensure adequacy of the model and 

take engine gas path components’ dynamic interaction into account, a 

crank based model with individual cylinders is utilized. Furthermore, a 

throttle filter is presented to slow down engine’s response and also, allow 

the electric motor to have the larger share of delivering power in transients. 

Finally, genetic algorithm is used to find optimal values for throttle filter 

parameter and electric motor load ratio, in order to have minimal overall 

fuel and electrical energy consumption. The optimization results show 

1.2% of fuel and 20.2% of total energy consumption reduction in 

comparison with conventional torque assist. 
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1. Introduction 

Due to strict emission regulations, conventional 

propulsion systems are being replaced by Hybrid 

ones, since transportation is responsible for 30% 

of the total greenhouse gases emission [1-2]. 

Another important aspect, of course, is fuel 

consumption. Internal Combustion Engines 

(ICEs) undergo many dynamic processes, 

especially over urban driving conditions, when 

throttle angle hovers around it’s lower range and 

there are frequent stops, ICEs have poor 

efficiency [3]. Therefore, by introducing Electric 

Motor (EM) into propulsion systems, one can 

achieve higher overall efficiency by tuning the 

collaboration of them.  

 Many researches have been conducted under 

control strategy title over the years to find the 

optimal control parameters. For example, one of 

the most influential parameters on fuel 

consumption is the power ratio between the two 

main sources. Methods like Dynamic 

Programming (DP) can give us the global optimal 

value for such control parameters at any given 

moment, but they require all the effective 

variables to be known [4]. Therefore, they are 

usually used only as a benchmark. On the other 

side of control strategy spectrum, rule-based and 

fuzzy logic-based methods are widely used, since 

they can be easily implemented, but they also 

require extensive knowledge to be able to operate 

the powertrain to work optimally. For this 

purpose, optimization techniques are used 

broadly in automotive control applications. 

Nikzadfar et al. [5] formulated an optimization 

problem in which fuel consumption (FC) and 

number of gear shifts are reduced without 

mitigating drivability through NEDC. Same 

authors in [6], investigated performance of a 

number of Bio-inspired Meta- Heuristic 

Algorithms in deriving PID controller parameters 

for engine idle speed control. Genetic Algorithms 

(GA) is one of these Bio-inspired Meta- Heuristic 

Algorithms, which has been adopted from natural 

biological evolution [7] and is particularly 

convenient for control strategy problem, since it 

deals with a highly nonlinear phenomenon. This 

algorithm can find best possible values for 

control parameters, through iterative search [8-9]. 

Montazeri et al. [10] used GA to find optimal 

parameter of fuzzy rule to achieve lower emission 

and better fuel consumption at the same time. 

Similarly, Masih-Tehrani et al. [11] adopted GA 

for identical purpose in heavy construction 

equipment and reported that, by controlling 

engine operating points, significant reduction in 

emissions and FC can be achieved. Xu et al [12] 

also adopted the same approach and with 

implementation of DP, concluded that this 

method can result in near optimal fuel 

consumption. Montazeri et al [13] investigated 

the application of GA for simultaneous 

optimization of HEV component sizing and 

control strategy, where a tradeoff between 

contradictory objectives was achieved. 

 The equivalent fuel consumption 

minimization strategy (ECMS) is a well-known 

method in HEV control strategies, which 

translates electrical energy consumption (EEC) 

into equivalent fuel consumption and 

consequently an optimization problem is formed, 

which by solving, overall minimum energy cost 

can be found. Paganelli [14] initially introduced 

the concept of ECMS in HEV application to 

reduce the FC. The main difficulty with ECMS is 

to find an appropriate equivalent factor, since it 

can vary depending on driving conditions, 

battery’s state of charge (SOC) and etc. [15]. Liu 

et al. in [16] formulated an ECMS problem by 

considering both SOC and acceleration, and by 

means of GA found a correction map which 

lowers the cost of electricity than fuel when 

acceleration demand is large, even when SOC is 

lower than minimum target. This method has 

proved to have lower FC than conventional 

ECSM. 

 Although, all aforementioned works show the 

impeccable practicality of GA in HEV 

applications, often utilized backward-looking 

vehicle modeling with steady-state map-based 

ICE models. In this work, we’ve develop a 

forward-looking mild parallel HEV with crank-

based ICE model, which takes adequate details 

into consideration. Crank angle based approach 

in CRUISE M enables us to take nonlinear and 

dynamic response of ICE into account and in turn, 

achieve closer result to reality, since 

experimental investigations are highly costly, 

time consuming and for such iterative researches 

almost not feasible. Different from ECMS 

approach, a filter with adjustable parameter is 
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introduced to slow down throttle response and 

along with a fixed adjustable power ratio for 

electric motor, as two input parameters, are 

formulated in an optimization problem and by 

means of GA, minimum usage is found.  

 This paper is organized as follows; section 2 

describes the procedure of modeling and its 

collaboration with optimization process. Firstly, 

vehicle modeling approach in AVL CRUISE M 

and subsystems are illustrated in detail. 

Moreover, throttle filter is introduced. Secondly, 

GA parameters and problem formulation are 

presented. In section 3, simulation results are 

provided and discussed. Finally, conclusion is 

given in section 4. 

 

2. Approach (Methodology) 

Fig. 1 demonstrates the procedure used in this 

work. First, vehicle model is developed in AVL 

CRUISE M environment. The vehicle model is 

then extracted as a S-function to be transferred to 

MATLAB/Simulink environment, where a co-

simulation of AVL CRUISE M and 

MATLAB/Simulink is formed. Based on this 

model, GA selects a set a two variables and 

optimization process is done. 

 

Fig. 1 : graphical schematic of optimization process  

 

2.1. Vehicle model  

There are two main types of vehicle modeling: 

forward and backward looking. [17] The first one 

begins with driver demand and moves through 

powertrain to the wheels, whereas the latter is the 

opposite, ending with propulsion system 

variables. In backward approach, torque and 

speed are derived by wheel speed and usually 

other variables such as fuel rate are calculated 

through steady-state ICE maps. However, in 

forward approach, energy route starts from 

propulsion sources, similar to what happens in 

real world. To ensure that the vehicle follows the 

drive cycles, a PID controller serves as a driver. 
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Fig. 2 shows the mild parallel HEV model 

developed in AVL CRUISE M environment. ICE 

consists of gas path subsystems which have been 

modeled using mean value approach, namely, air 

cleaner, throttle, intake and exhaust manifolds 

and a plenum (from air cleaner to throttle). 

Instead of quasi-steady assumptions in mass flow 

through gas path elements, AVL CRUISE M 

utilizes transient momentum balance equations 

presented by Katrašnik [18]. 

In cylinder block, four individual cylinders are 

modeled to take nonlinear dynamic of ICE into 

account. Fig. 3 shows modeling of each cylinder. 

Vibe function is adopted for combustion process 

which determines the released heat according to 

crank angle. Generally, there are two types of 

vibe functions, single and double vibe [19]. This 

function can be adjusted by two parameters; “m” 

which determines the heat release and “a” for 

how much of fuel is burned. In this work, the 

single vibe function is utilized. Fig. 4 illustrates 

corresponding rate of heat release at 800 rpm. 

Intake and exhaust ports also follows same 

transient momentum balance principles 

mentioned earlier and are modeled by orifice 

equation, in which Flow coefficient depends on 

valve lift. Since engine model is based on crack 

angle, valve lift is determined by a map (see Fig. 

6). Generated heat is then divided into 3 parts; 

first part leaves the cylinder as exhaust gas 

energy, second is transmitted into cylinder block 

through thermal  

connections (shown by red connections in Fig. 3) 

and the last part generates the engine output 

torque. Additionally, frictional forces are 

considered to be speed related (see Fig. 5). Crank 

angle based approach in CRUISE M enables us to 

take nonlinear and dynamic response of ICE into 

account and in turn, achieve closer result to 

reality, since experimental investigations are 

highly costly, time consuming and for such 

iterative researches almost not feasible. ICE and 

gas path general specifications are listed in Table 
1. 

 On the other side, Since EMs have relatively 

faster dynamics, a map-based approach has been 

implemented for electrical parts. Fig. 7-a shows 

EM full load torque-speed graph and battery’s 

open circuit voltage. EM only works in first 

torque-speed quarter, meaning that no 

regenerative braking is considered. At every time 

 

Fig. 2:  mild parallel HEV model 
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Fig. 3: in-cylinder model 

 

Fig. 4 : Rate of Heat Release (ROHR) over a crank angle 

cycle 

 

Fig. 5 : Engine friction according to speed 

step, a load signal between 0 and1 is sent to EM 

and based on speed, generated torque is 

calculated. Consequently, battery block defines 

the electrical energy derived by EM. Gearbox has 

a set of gear ratios that are selected based on 

velocity and transmit power to the wheels. Brake 

blocks determine braking torque based on brake 

pressure (a linear function of brake pedal), 

friction coefficient, piston surface, disc effective 

surface and its efficiency. Table 2, provides the 

general vehicle information. 

 

Table 1: ICE components general specifications 

Air cleaner(core volume, length, 

hydraulic diameter, flow 

coefficient) 

1.794 l, 300mm, 10mm, 

0.95 

Air cleaner to throttle plenum 

(core volume) 
2.09 l 

Throttle 

(body diameter, shaft diameter, rest 
angle, flow coefficient) 

55 mm, 11 mm, 5°, 1 

Intake manifold 8.5 l 

Exhaust manifold 21 l 

Catalyst 

(core volume, length, hydraulic 

diameter, flow coefficient) 

4.1  l, 300mm, 10mm, 1 

Engine (size, number of cylinders, 

bore, stroke, compression ratio, type 
of injection, air fuel ratio) 

1.7, l, 4 , 80 mm, 85 mm, 

10, direct, 1 

Maximum torque and power 
145 N.m (4000rpm)  

80 kW (6000rpm) 

Vibe parameters (m, a) 1.96, 6.9 

 

Table 2: Vehicle components general specifications 

Gearbox (gear ratios) 
5 speed 

3.45, 1.84, 1.25, 1, 0.82 

Transitional gear ratio (final gear 
ratio) 

3.53 (12.178) 
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EM torque coupler ratio 2.5 

Wheel (moment of inertia, friction 

coefficient, reference wheel load, radius) 

0.95, 4512 N (front), 2100 N 

(rear), 317.19 mm 

weight 1322 kg 

Brake 1800 mm2 

(friction coefficient, effective 

friction radius, efficiency, moment 
of inertia) 

0.25, 130 mm, 0.99, 0.02 kg.m2 

Battery maximum charge 10 A.h 

Air drag  

(frontal area, drag coefficient) 
2.16 m2, 0.3 

 

 

Fig. 6 a) intake port valve lift according to crank angle, b) 

flow coefficient according to valve lift 

 

The vehicle model is then extracted as a S-

function to be transferred to MATLAB/Simulink 

environment. In this co-simulation, throttle 

signal, which is initially determined by the PID 

controller, is distorted by the following transfer 

function: 

( )
a

C s
s a




                                                (1) 

Which has a unit dc gain but slows down as “a” 

decreases. Fig. 8 demonstrates step response of 

this filter for different values of “a”. It should be 

mentioned that, EM load signal does not undergo 

through this filter, mainly because it’s only used 

to slow down power demand from ICE and in 

turn, decrease fuel consumption. Consequently, 

EM would be responsible to compensate the 

lower torque over transients. Another control 

parameter is load ratio “r” between ICE and EM. 

Fig. 9-a depicts the mentioned signal routing. In 

order to have a comparison, a conventional 

method, where EM only assists ICE at 

acceleration times is considered as well (see Fig. 

9-b). 
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Fig. 7 a) EM full load torque-speed graph, b) Battery 

open circuit voltage map 

 

 

 

 

 

 

Fig. 9: a) acceleration signal routing with throttle 

filter, b) torque assist acceleration signal routing 

 

2.2 Genetic algorithm and problem 

formulation 

Our objective is to reduce the fuel and electrical 

energy consumption simultaneously. As 

mentioned previously, two main variables are, 

EM load ratio “r” and throttle filter parameter “a”. 

Accordingly, cost function is set to be: 

1 2( , )
n n

FC E
J a r w w

FC E
 

 
                              

(2) 

Where FC is the fuel consumption and E is 

electrical power drawn from the battery.   and   are 

employed to normalize and are derived over drive 

cycle, as variables are set on random value. In 
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Fig. 8 : step response of throttle filter 
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addition, weight factors can be implemented to 

impose priority of fuel economy or electrical 

power consumption. Here, they are considered to 

be equal to 1. Table 3 shows variable bound 

values. It must be mentioned that, since 

performance is not considered directly in cost 

function, lower EM load ratio value is demanded 

by acceleration time limit while “a” is at its 

lowest. Intentionally, this bound was selected 

externally, so that it wouldn’t slow down the 

optimization process. Both variables “a” and “r” 

are fixed through drive cycles. 

 

Table 3: optimization variables bound 

Variables Lower bounds 
 

Higher bounds 

THROTTLE FILTER 
PARAMETER, A 

1 
20 

EM LOAD RATIO, R 0.5 1 

 

GA has two operators, known as crossover and 

mutation. [2-23] Algorithm starts with an initial 

population, then fitness value of each individual 

is calculated as their performance with regards to 

the cost function. From there, through every 

iteration, those two operators produce the next 

generation population, also known as children. 

Table 4 shows the parameters of GA. 

 

Table 4: GA parameters 

POPULATION 20 

SELECTION roulette 

CROSSOVER FUNCTION Heuristic 

CROSSOVER FRACTION 0.9 

MUTATION FUNCTION Adaptive feasible 

ELITE SIZE 1 

GENERATIONS 20 

 

Optimization toolbox by MATLAB is utilized 

to perform the algorithm. Heuristic crossover 

function creates children that randomly lie on the 

line containing the two parents, a small distance 

away from the parent with the better fitness value, 

in the direction away from the parent with the 

worse fitness value. While, Adaptive feasible, as 

mutation function, randomly generates directions 

that are adaptive with respect to the last 

successful or unsuccessful generation. Fig. 1 

shows the collaboration of GA and HEV co-

simulation in MATLAB/Simulink in search of 

the optimal variable values. 
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3. Results 

TEH-CAR urban driving profile [24] was 

selected as a dynamic cycle to be used in 

optimization. Considering the model detail and 

the total computation time, the first part of this 

cycle, which is almost 180 seconds and starts and 

ends with zero, is chosen as our designated 

driving cycle. PID controller makes sure that 

vehicle will follow the velocity profile with any 

given sets of variables. Fig. 10 illustrates the 

adequate PID performance for both lower and 

higher bounds. It must be noted that driver has a 

substantial effect on forward looking modeling 

results. It determines whether driving is done 

aggressively or mildly. Also, unlike backward 

 

Fig. 10 :  performance of PID controller as driver with different GA variable values 

 

Fig. 11:  EM and ICE power (kW) over THE-CAR urban with a=1, r=0.5 
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modeling approach where exact required torque 

is determined according to velocity, vehicle 

velocity fluctuates around desired profile as 

driver (PID controller) tries to figure out 

appropriate acceleration and brake pedal. Fig. 11 

depicts ICE and EM power over drive cycle, with 

a=1, r=0.5. As previously mentioned, throttle 

filter puts a delay on ICE response and in this 

manner EM is responsible for the beginning of 

transient response. Also, it’s interesting to see 

how as EM instant torque kicks in, negative 

values of ICE power are visible, since EM is also 

propelling ICE in these acceleration time periods. 

 

 

Fig. 12 : a) cost function for different sets of variables and 

torque assist, b) normalized values of FC and EEC 

comparison 

 

Cost function values for different sets of 

variables and aforementioned torque assist are 

represented in Fig. 12-a. These numbers reflect 

fuel and electrical energy consumption. 

Generally, with higher values for “a” throttle 

response would be faster and therefore, larger FC 

is expected, while higher values for “r” would 

mean electrical share is more, therefore ICE with 

filtered throttle would use less fuel. However, 

with a constant value for each variable, changes 

in FC and EEC are different. For example, at 

r=0.5, by changing “a” from 1 to 20, FC increases 

by 5.63%, while EEC decreases by 15.29%. Also, 

at a=1, by changing “r” from 0.5 to 1, FC 

decreases by 21.63%, while EEC increases by 

69.38%, which means larger changes in EEC is 

possible by smaller changes in FC. This can be 

explained by the fact that transients, especially 

aggressive ones, have major effect on FC. 

Therefore, by allowing EM to accelerate both the 

engine and the vehicle, at the very beginning of 

every transient, can highly reduce the FC. 

Thereupon, maximum fuel economy can be 

attained by setting both “a” and “r” at their 

maximum. Fig. 13 illustrates GA progress in 

search of Optimal point, which was found to be 

at a=17.31 and r=0.505, with values very close to 

a=20 and r=0.5. It must be considered that this 

result is achieved when both EEC and FC weights 

are equal to 1 in the cost function, meaning that 

both are equally valuable. Moreover, in 

comparison with conventional toque assist 

(mentioned in Fig. 9-b), FC in all cases are less, 

since throttle movements are not damped and it 

shows the efficacy of presented filter. 
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Fig. 13: GA progress 

4. Conclusion 

In this work, we aimed to find the relation 

between FC and EEC and also, the optimal 

energy consumption, when both are equally 

valued. For this purpose, first a forward looking 

parallel HEV model was developed. To ensure 

adequacy of the model, a crank based ICE model 

with individual cylinders was utilized. Secondly, 

a novel throttle filter with an adjustable parameter 

“a” is used to slow down ICE response and also, 

to allow the EM to have the larger share of 

delivering power in transients. EM load ratio “r” 

was selected as the second control variable, to 

determine required power from EM according to 

load demand. It can be concluded that, changes in 

FC and EEC happens by unequal margin at 

different “a” and “r”. Optimal point was found to 

be closer to “a” at its higher bound and “r” at its 

lower bound, since more EEC reduction can be 

achieved with less FC, when they are equally 

valued. Also, it would be more convenient to 

have EM partially helping ICE with a filtered 

throttle at all time, instead of injecting torque only 

when vehicle is accelerating. According to Fig. 
12-a, this way 1.2% of fuel and 20.2% of total 

electric energy consumption reduction can be 

achieved in comparison with conventional torque 

assist. 
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